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Gray Level Co-occurrence Matrix (GLCM) for Diffraction Image Analysis

According to the introduction of Haralick, Gray Level Co-occurrence Matrix (GLCM) algorithm 
summarized as mathematical and statistical texture analysis processes preformed to extract important 
second order statistical texture features from monochromatic images. These images represented two-
dimensional pixels array, and each pixel contains a quantized grey level. The co-occurrence frequency 
defined for two neighboring pixels that are separated by a displacement vector. The number of the pixels 
having the same displacement vector (based on the distance and angle) represented as an element in gray 
level co-occurrence matrix. 

In other words, the gray tone of a rectangular Image 𝐼 with 𝑁𝑥 horizontal resolution pixels, and 𝑁𝑦 
vertical resolution pixels is quantized by𝑁𝑔 levels. 𝐿𝑥 = {1,2,…..𝑁𝑥} and𝐿𝑦 = {1,2,…..𝑁𝑦}, are the 
horizontal and the vertical spatial domains respectively, and 𝐺 = {1,2,…..𝑁𝑔} is the quantized gray level 
tone.  The set 𝐿𝑥 × 𝐿𝑦 represent the set of pixels of the image sorted by their row-column labels. An input 
image 𝐼 can be regarded as a function that assigns some gray level in 𝐺 to each pixel in𝐿𝑥 × 𝐿𝑦. It is assumed 
that the texture information in an image 𝐼 is contained in the overall or average spatial relationship. Let’s 
denote 𝑝(𝑖,𝑗,𝑑) as the “co-occurrence” frequency of two neighboring pixels that are separated by the 
displacement vector 𝒅 = (𝑑,𝜃) with one pixel intensity of gray level 𝑖 and the other of gray level 𝑗. 𝑑 is the 
offset separation distance between the two pixels and 𝜃 is the specified angular direction, usually 
( 𝜃 = 0°, 45°, 90°, 𝑎𝑛𝑑 135 °) [1].  

A GLCM matrix 𝑃 can be obtained with the elements as frequency𝑝(𝑖, 𝑗, 𝑑). It is easy to show that 
the matrix is symmetric since 𝑝(𝑖, 𝑗, 𝑑) =  𝑝(𝑗, 𝑖, 𝑑) and depends on the choice of𝑑. For example, suppose 
an image having 4 × 4 pixels with gray level range from 0 to 3 as shown below[1]:

The frequencies of the GLCM can be found for the horizontal direction  (𝜃 = 0) and𝑑 = 1:

𝑃0° =

For (𝜃 = 45°) and 𝑑 = 1 is:
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𝑃45° =

For (𝜃 = 90°) and 𝑑 = 1 is:

𝑃90° =

For (𝜃 = 135°) and 𝑑 = 1 is:

𝑃135° =

After computing the frequencies of all possible gray level pairs, the GLCM usually normalized to 
the total number of neighboring pixels pair for the calculated matrix 𝑃[1].   

The following table shows the definitions for most relevant texture feature of GLCM used in image 
analysis:
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